iSNO-PseAAC: Predict Cysteine S-Nitrosylation Sites in Proteins by Incorporating Position Specific Amino Acid Propensity into Pseudo Amino Acid Composition
نویسندگان
چکیده
Posttranslational modifications (PTMs) of proteins are responsible for sensing and transducing signals to regulate various cellular functions and signaling events. S-nitrosylation (SNO) is one of the most important and universal PTMs. With the avalanche of protein sequences generated in the post-genomic age, it is highly desired to develop computational methods for timely identifying the exact SNO sites in proteins because this kind of information is very useful for both basic research and drug development. Here, a new predictor, called iSNO-PseAAC, was developed for identifying the SNO sites in proteins by incorporating the position-specific amino acid propensity (PSAAP) into the general form of pseudo amino acid composition (PseAAC). The predictor was implemented using the conditional random field (CRF) algorithm. As a demonstration, a benchmark dataset was constructed that contains 731 SNO sites and 810 non-SNO sites. To reduce the homology bias, none of these sites were derived from the proteins that had [Formula: see text] pairwise sequence identity to any other. It was observed that the overall cross-validation success rate achieved by iSNO-PseAAC in identifying nitrosylated proteins on an independent dataset was over 90%, indicating that the new predictor is quite promising. Furthermore, a user-friendly web-server for iSNO-PseAAC was established at http://app.aporc.org/iSNO-PseAAC/, by which users can easily obtain the desired results without the need to follow the mathematical equations involved during the process of developing the prediction method. It is anticipated that iSNO-PseAAC may become a useful high throughput tool for identifying the SNO sites, or at the very least play a complementary role to the existing methods in this area.
منابع مشابه
Prediction of Protein S-Nitrosylation Sites Based on Adapted Normal Distribution Bi-Profile Bayes and Chou’s Pseudo Amino Acid Composition
Protein S-nitrosylation is a reversible post-translational modification by covalent modification on the thiol group of cysteine residues by nitric oxide. Growing evidence shows that protein S-nitrosylation plays an important role in normal cellular function as well as in various pathophysiologic conditions. Because of the inherent chemical instability of the S-NO bond and the low abundance of e...
متن کاملiSNO-AAPair: incorporating amino acid pairwise coupling into PseAAC for predicting cysteine S-nitrosylation sites in proteins
As one of the most important and universal posttranslational modifications (PTMs) of proteins, S-nitrosylation (SNO) plays crucial roles in a variety of biological processes, including the regulation of cellular dynamics and many signaling events. Knowledge of SNO sites in proteins is very useful for drug development and basic research as well. Unfortunately, it is both time-consuming and costl...
متن کاملiHyd-PseAAC: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity into Pseudo Amino Acid Composition
Post-translational modifications (PTMs) play crucial roles in various cell functions and biological processes. Protein hydroxylation is one type of PTM that usually occurs at the sites of proline and lysine. Given an uncharacterized protein sequence, which site of its Pro (or Lys) can be hydroxylated and which site cannot? This is a challenging problem, not only for in-depth understanding of th...
متن کاملiSuc-PseAAC: predicting lysine succinylation in proteins by incorporating peptide position-specific propensity
Lysine succinylation in protein is one type of post-translational modifications (PTMs). Succinylation is associated with some diseases and succinylated sites data just has been found in recent years in experiments. It is highly desired to develop computational methods to identify the candidate proteins and their sites. In view of this, a new predictor called iSuc-PseAAC was proposed by incorpor...
متن کاملبررسی تمایل مجاورت اسیدهای آمینه با یکدیگر در مارپیچهای آلفا
In order to study the tendency of amino acid neighbors in helical structures, proteins with known structures were carefully analyzed. The studied helical positions: N , Ncap, N1, N2, N3, N4, M, C4, C3, C2, C1, Ccap, C and their doublet counterparts: N Ncap, NcapN1, N1N2, N2N3, N3N4, M1M2, M2M3, C4C3, C3C2, C2C1, C1Ccap, CcapC were carefully analyzed. The propensity for all amino acids i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013